Publications by authors named "H E Killer"

Background/objectives: We aimed to measure cerebrospinal fluid (CSF) flow rates in the subarachnoid space (SAS) of the optic nerve (ON) by applying non-invasive diffusion-weighted MRI in patients with normal tension glaucoma (NTG) compared to age-matched controls.

Subjects/methods: In this prospective study, an analysis of diffusion-weighted images of 26 patients with NTG (49ONs) and age-matched volunteers (52ONs) was conducted. Subjects were classified into 4 groups: group I (50-59 y.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how cerebrospinal fluid (CSF) dynamics are affected by changes in the optic nerve's subarachnoid space, which is important for understanding neurodegenerative diseases.
  • Using advanced computational fluid dynamics, researchers analyzed how structure impacts CSF movement and solute transfer on a microscopic level.
  • Results indicate that minor pressure drops can effectively circulate CSF, but variations in flow speed create potential risks in certain areas of the optic nerve's subarachnoid space.
View Article and Find Full Text PDF

Glaucoma is one of the main causes of irreversible blindness in the world. The most common form, primary open-angle glaucoma, is an optic neuropathy that is characterized by a progressive loss of retinal ganglion cells and their axons, leading to structural changes in the optic nerve head and associated visual field defects. Elevated intraocular pressure remains the most important modifiable risk factor for primary open-angle glaucoma.

View Article and Find Full Text PDF

Background: The meninges, formed by dura, arachnoid and pia mater, cover the central nervous system and provide important barrier functions. Located between arachnoid and pia mater, the cerebrospinal fluid (CSF)-filled subarachnoid space (SAS) features a variety of trabeculae, septae and pillars. Like the arachnoid and the pia mater, these structures are covered with leptomeningeal or meningothelial cells (MECs) that form a barrier between CSF and the parenchyma of the optic nerve (ON).

View Article and Find Full Text PDF

Background: The three-layered meninges cover and protect the central nervous system and form the interface between cerebrospinal fluid and the brain. They are host to a lymphatic system essential for maintaining fluid dynamics inside the cerebrospinal fluid-filled subarachnoid space and across the brain parenchyma via their connection to glymphatic structures. Meningeal fibroblasts lining and traversing the subarachnoid space have direct impact on the composition of the cerebrospinal fluid through endocytotic uptake as well as extensive protein secretion.

View Article and Find Full Text PDF