Publications by authors named "H E Guderley"

Used vehicle crankcase oils are a source of contamination in Caribbean marine environments and may alter the oxidative balance of organism that inhabiting coastal ecosystems. This paper aims to evaluate effects of a water-soluble fraction of used vehicle crankcase oils (WSF-UVCO) on the antioxidant responses of the flame scallop . The organisms were exposed to ascending sublethal concentrations 0, 0.

View Article and Find Full Text PDF

Peter Hochachka was an early pioneer in the field of comparative biochemistry. He passed away in 2002 after 4 decades of research in the discipline. To celebrate his contributions and to coincide with what would have been his 80th birthday, a group of his former students organized a symposium that ran as a satellite to the 2017 Canadian Society of Zoologists annual meeting in Winnipeg, Manitoba (Canada).

View Article and Find Full Text PDF

Transcriptomic studies are facilitating the search for the molecular bases of adaptation in natural populations, but the impact of these differences in mRNA content on animal physiology are often unknown. One way to determine if molecular changes have the potential to influence animal physiology and performance is to test for correlated changes at higher levels of biological organization, including enzyme activity. Here, we measure the activities of carbohydrate metabolism enzymes to test if previously documented genetic and transcriptomic variation between 'dwarf' and 'normal' Lake Whitefish ecotypes are associated with corresponding changes in enzyme activity (measured as maximal rate, V) in liver and skeletal muscle.

View Article and Find Full Text PDF

The repeated evolution of similar phenotypes by similar mechanisms can be indicative of local adaptation, constraints or biases in the evolutionary process. Little is known about the incidence of physiological convergence in natural populations, so here we test whether energy metabolism in 'dwarf' and 'normal' Lake Whitefish evolves by similar mechanisms. Prior genomic and transcriptomic studies have found that divergence in energy metabolism is key to local adaptation in whitefish species pairs, but that distinct genetic and transcriptomic changes often underlie phenotypic evolution among lakes.

View Article and Find Full Text PDF

The physiological mechanisms underlying local adaptation in natural populations of animals, and whether the same mechanisms contribute to adaptation and acclimation, are largely unknown. Therefore, we tested for evolutionary divergence in aerobic exercise physiology in laboratory bred, size-matched crosses of ancestral, benthic, normal Lake Whitefish (Coregonus clupeaformis) and derived, limnetic, more actively swimming "dwarf" ecotypes. We acclimated fish to constant swimming (emulating limnetic foraging) and control conditions (emulating normal activity levels) to simultaneously study phenotypic plasticity.

View Article and Find Full Text PDF