We report here some results of a long-term (19 month) study with cats fed methylmercury (MeHg) in nutritionally balanced diets based on fish. By using either freshwater pike (low in Se) or canned tuna (high in Se) as the major protein source, basal diets with low levels of MeHg were prepared having different Se content, all Se being of natural origin. The basal diets produced no signs of toxicity or pathological changes over the l9-month period.
View Article and Find Full Text PDFSelenium compounds, such as sodium selenite and Ebselen were shown to increase high affinity ryanodine binding to the skeletal muscle type ryanodine receptor (RyR1) at nanomolar concentrations, and inhibit the receptor at low micromolar concentrations. This biphasic response was observed in both concentration and time-dependent assays. Extensive washing did not reverse either the stimulation or suppression of receptor binding, but both were prevented or reversed by addition of reduced glutathione, GSH.
View Article and Find Full Text PDFThis article highlights some recent advances in selenium cancer chemoprevention research. It has been well documented that the chemical transformation of selenium to a monomethylated metabolite is an important step in achieving cancer prevention. Studies with the rat mammary carcinogenesis model suggested that methylselenocysteine (MSC), a good precursor for generating methylselenol endogenously, is able to block clonal expansion of premalignant lesions in the mammary gland.
View Article and Find Full Text PDFDespite the growing interest in selenium intervention of prostate cancer in humans, scanty information is currently available on the molecular mechanism of selenium action. Our past research indicated that methylseleninic acid (MSA) is an excellent reagent for investigating the anticancer effect of selenium in vitro. The present study was designed to examine the cellular and molecular effects of MSA in PC-3 human prostate cancer cells.
View Article and Find Full Text PDFSelenium has been implicated as a promising chemopreventive agent for prostate cancer. Whereas the anticancer mechanisms have not been clearly defined, one hypothesis relates to selenium metabolites, especially the monomethyl selenium pool, generated under supranutritional selenium supplementation. To explore potential molecular targets for mediating the chemopreventive activity, we contrasted the effects of methylseleninic acid (MSeA), a novel precursor of methylselenol, versus sodium selenite, a representative of the hydrogen selenide metabolite pool, on apoptosis execution, cell cycle distribution, and selected protein kinases in DU145 human prostate cancer cells.
View Article and Find Full Text PDF