Publications by authors named "H E Angka"

We study the role of muscle in the epigenetic (N.B., we use this term with the broader and more integrative meaning) shaping of developing motor neuron fate choices employing an approach based on mouse mutagenesis and pathology.

View Article and Find Full Text PDF

Glial cell line-derived neurotrophic factor (GDNF) is known as a potent survival factor for neurons in vitro and in vivo. The current study investigated the effects of a single in utero injection with GDNF in both wild-type and Myf5-/-:MyoD-/- embryos. The embryos in the latter group, denoted double mutants (DM), do not contain skeletal muscle and associated neurotrophic factors due to lack of myogenesis and, therefore, neurons of the central and peripheral nervous system undergo excessively occurring programmed cell death (EPCD).

View Article and Find Full Text PDF

We examined the effects of a single injection of exogenous NT-3, administered at embryonic day (E) 13.5, on the survival of two populations of motor neurons and two populations of sensory neurons. Both wild-type and double knockout, Myf5-/-:MyoD-/-, mutant embryos were examined to determine the effects of the aforementioned neurotrophin on motor and sensory neuron survival in the presence and absence, respectively, of skeletal muscle.

View Article and Find Full Text PDF

Fetal breathing-like movements (FBMs) are important in normal lung growth and pneumocyte differentiation. In amyogenic mouse embryos (designated as Myf5-/-:MyoD-/-, entirely lacking skeletal musculature and FBMs), type II pneumocytes fail to differentiate into type I pneumocytes, the cells responsible for gas exchange, and the fetuses die from asphyxia at birth. Using oligonucleotide microarrays, we compared gene expression in the lungs of Myf5-/-:MyoD-/- embryos to that in normal lungs at term.

View Article and Find Full Text PDF

The aim of our study was to assess the ability of brain-derived neurotrophic factor (BDNF) to rescue motor and sensory neurons from programmed cell death. It is clearly demonstrated that the administration of a single injection of a putative neurotrophic factor to mouse embryos in utero on embryonic day (E) 14.5 is sufficient to significantly reduce the death of motor neurons when assessed on E18.

View Article and Find Full Text PDF