Coral persistence in the Anthropocene depends on interactions among holobiont partners (coral animals and microbial symbionts) and their environment. Cryptic coral lineages-genetically distinct yet morphologically similar groups-are critically important as they often exhibit functional diversity relevant to thermal tolerance. In addition, environmental parameters such as thermal variability may promote tolerance, but how variability interacts with holobiont partners to shape responses to thermal challenge remains unclear.
View Article and Find Full Text PDFAs on land, oceans exhibit high temporal and spatial temperature variation. This "ocean weather" contributes to the physiological and ecological processes that ultimately determine the patterns of species distribution and abundance, yet is often unrecognized, especially in tropical oceans. Here, we tested the paradigm of temperature stability in shallow waters (<12.
View Article and Find Full Text PDFThe symbiosis between corals and dinoflagellates of the family Symbiodiniaceae is sensitive to environmental stress. The oxidative bleaching hypothesis posits that extreme temperatures lead to accumulation of photobiont-derived reactive oxygen species ROS, which exacerbates the coral environmental stress response (ESR). To understand how photosymbiosis modulates coral ESRs, these responses must be explored in hosts in and out of symbiosis.
View Article and Find Full Text PDF