Publications by authors named "H Doege"

Activation of adenosine A₁ receptors was reported to promote fatty acid synthesis in AML-12 cells, by increasing the expression of SREBP-(1c) (sterol regulatory binding protein 1c) and FAS (fatty acid synthase). Since these findings have important therapeutic implications for the discovery of adenosine A₁ receptor agonists, further studies were undertaken to determine the expression and functional relevance of adenosine A₁ receptor in the liver. To that end, we used two classes of distinct adenosine A₁ receptor agonists: CPA (N⁶-cyclopentyl-adenosine), a full agonist and GS-9667 (2-{6-[((1R,2R)-2-hydroxycyclopentyl)-amino]purin-9-yl}(4S,5S,2R,3R)-5-[(2-fluorophenylthio)methyl]-oxolane-3,4-diol), a partial agonist.

View Article and Find Full Text PDF

Fatty acid transport protein (FATP)2, a member of the FATP family of fatty acid uptake mediators, has independently been identified as a hepatic peroxisomal very long-chain acyl-CoA synthetase (VLACS). Here we address whether FATP2 is 1) a peroxisomal enzyme, 2) a plasma membrane-associated long-chain fatty acid (LCFA) transporter, or 3) a multifunctional protein. We found that, in mouse livers, only a minor fraction of FATP2 localizes to peroxisomes, where it contributes to approximately half of the peroxisomal VLACS activity.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease is a serious health problem linked to obesity and type 2 diabetes. To investigate the biological outcome and therapeutic potential of hepatic fatty acid uptake inhibition, we utilized an adeno-associated virus-mediated RNA interference technique to knock down the expression of hepatic fatty acid transport protein 5 in vivo prior to or after establishing non-alcoholic fatty liver disease in mice. Using this approach, we demonstrate here the ability to achieve specific, non-toxic, and persistent knockdown of fatty acid transport protein 5 in mouse livers from a single adeno-associated virus injection, resulting in a marked reduction of hepatic dietary fatty acid uptake, reduced caloric uptake, and concomitant protection from diet-induced non-alcoholic fatty liver disease.

View Article and Find Full Text PDF

Nonshivering thermogenesis in brown adipose tissue (BAT) generates heat through the uncoupling of mitochondrial beta-oxidation from ATP production. The principal energy source for this process is fatty acids that are either synthesized de novo in BAT or are imported from circulation. How uptake of fatty acids is mediated and regulated has remained unclear.

View Article and Find Full Text PDF

Long-chain fatty acids are both important metabolites as well as signaling molecules. Fatty acid transport proteins are key mediators of cellular fatty acid uptake and recent transgenic and knockout animal models have provided new insights into their contribution to energy homeostasis and to pathological processes, including obesity and insulin desensitization.

View Article and Find Full Text PDF