Biochar applications have been proposed for mitigating some soil greenhouse gas (GHG) emissions. However, results can range from mitigation to no effects. To explain these differences, mechanisms have been proposed but their reliability depends on biochar type, soil and climatic conditions.
View Article and Find Full Text PDFMeasurements of greenhouse gas (GHG) fluxes, particularly methane (CH) and nitrous oxide (NO) in mountain ecosystems are scarce due to the complexity and unpredictable behavior of these gases, in addition to the remoteness of these ecosystems. In this context, we measured CO, CH, and NO fluxes in four semi-natural pastures in the Pyrenees to investigate their magnitude and range of variability. Our interest was to study GHG phenomena at the patch-level, therefore we chose to measure the gas-exchange using a combination of a gas analyzer and manual chambers.
View Article and Find Full Text PDFPlant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland).
View Article and Find Full Text PDF