Publications by authors named "H De Smedt"

Purpose: This meta-analysis assessed whether atypical antipsychotics (AAPs) and esketamine nasal spray (ESK-NS), which are mechanistically distinct, differ in antidepressant outcomes.

Patients And Methods: Data were extracted from 12 trials of ESK-NS or AAPs in depressed patients (4276) with inadequate response or resistance to conventional antidepressants. Montgomery-Åsberg Depression Rating Scale (MADRS) score reductions from baseline and response rates (≥50% reduction) were analyzed.

View Article and Find Full Text PDF

Criteria for treatment-resistant depression (TRD) and partially responsive depression (PRD) as subtypes of major depressive disorder (MDD) are not unequivocally defined. In the present document we used a Delphi-method-based consensus approach to define TRD and PRD and to serve as operational criteria for future clinical studies, especially if conducted for regulatory purposes. We reviewed the literature and brought together a group of international experts (including clinicians, academics, researchers, employees of pharmaceutical companies, regulatory bodies representatives, and one person with lived experience) to evaluate the state-of-the-art and main controversies regarding the current classification.

View Article and Find Full Text PDF

Macroautophagy/autophagy is an intracellular process involved in the breakdown of macromolecules and organelles. Recent studies have shown that PKD2/PC2/TRPP2 (polycystin 2, transient receptor potential cation channel), a nonselective cation channel permeable to Ca that belongs to the family of transient receptor potential channels, is required for autophagy in multiple cell types by a mechanism that remains unclear. Here, we report that PKD2 forms a protein complex with BECN1 (beclin 1), a key protein required for the formation of autophagic vacuoles, by acting as a scaffold that interacts with several co-modulators via its coiled-coil domain (CCD).

View Article and Find Full Text PDF

Bcl-2 proteins have emerged as critical regulators of intracellular Ca dynamics by directly targeting and inhibiting the IP receptor (IPR), a major intracellular Ca-release channel. Here, we demonstrate that such inhibition occurs under conditions of basal, but not high IPR activity, since overexpressed and purified Bcl-2 (or its BH4 domain) can inhibit IPR function provoked by low concentration of agonist or IP, while fails to attenuate against high concentration of agonist or IP. Surprisingly, Bcl-2 remained capable of inhibiting IPR1 channels lacking the residues encompassing the previously identified Bcl-2-binding site (a.

View Article and Find Full Text PDF