Publications by authors named "H Daniel Preschel"

In the wake of the Covid-19 pandemic, it has become clear that global access to efficacious antiviral drugs will be critical to combat future outbreaks of SARS-CoV-2 or related viruses. The orally available SARS-CoV-2 main protease inhibitor nirmatrelvir has proven an effective treatment option for Covid-19, especially in compromised patients. We report a new synthesis of nirmatrelvir featuring a highly enantioselective biocatalytic desymmetrization (>99% ee) and a highly diastereoselective multicomponent reaction (>25:1 dr) as the key steps.

View Article and Find Full Text PDF

An iron-catalysed carbene transfer reaction of diazo compounds to isocyanides has been developed. The resulting ketenimines are trapped in situ with various bisnucleophiles to access a range of densely functionalized heterocycles (pyrimidinones, dihydropyrazolones, 1H-tetrazoles) in a one-pot process. The electron-rich Hieber anion ([Fe(CO) NO] ) facilitates efficient catalytic carbene transfer from acceptor-type α-diazo carbonyl compounds to isocyanides, providing a cost-efficient and benign alternative to similar noble metal-catalysed processes.

View Article and Find Full Text PDF

Cyanohydrins are versatile intermediates toward valuable organic compounds like α-hydroxy carboxylic acids, α-amino acids, and β-amino alcohols. Numerous protocols are available for synthesis of (O-protected) cyanohydrins, but all procedures invariably rely on the use of toxic cyanide sources. A novel cyanide-free synthesis of O-trityl protected cyanohydrins via a catalytic Passerini-type reaction involving aldehydes and trityl isocyanide is reported.

View Article and Find Full Text PDF

Herein, we describe the versatile application of triphenylmethyl (trityl) isocyanide in multicomponent chemistry. This reagent can be employed as a cyanide source in the Strecker reaction and as convertible isocyanide in the preparation of N-acyl amino acids by Ugi 4CR/detritylation and free imidazo[1,2-a]pyridin-3-amines by a Groebke-Blackburn-Bienaymé 3CR condensation/deprotection protocol. The mechanisms of these three classical MCRs intersect at the common N-trityl nitrilium ion intermediate, whose predictable reactivity can be exploited towards chemoselective transformations.

View Article and Find Full Text PDF