Publications by authors named "H D Stensel"

Sludge granulation in continuous-flow systems is an emerging technology to intensify existing activated sludge infrastructure for nutrient removal. In these systems, the nutrient removal contributions and partitioning of microbial functions between granules and flocs can offer insights into process implementations. To this end, a reactor system that simulates the continuous-flow environment using an equal amount of initial granule and floc biomass was investigated.

View Article and Find Full Text PDF

An aerobic granular sludge (AGS) pilot plant fed with a mixture of acetate amended centrate and secondary effluent was used to investigate the optimal granule size range for simultaneous nitrification and denitrification (SND) and ortho-phosphate removal. The anaerobic phase was mixed to understand how AGS will perform if integrated with a continuous flow activated sludge system that cannot feed the influent through the settled sludge bed. Five different granule size fractions were taken from the pilot (operated at DO setpoint of 2mgO/L) and each size was subjected to activity tests in a well-controlled lab-scale AGS reactor at four dissolved oxygen (DO) concentrations of 1, 2, 3, and 4 mgO/L.

View Article and Find Full Text PDF

The relationship between ammonia oxidation rate, nitrifiers population, and modelled aerobic zone volume in different granule sizes was investigated using aerobic granular sludge from a pilot-scale reactor. The pilot was fed with centrate and secondary effluent amended with acetate as the main carbon source. The maximum specific ammonia oxidation rates and community composition of different aerobic granular sludge size fractions were evaluated by batch tests, quantitative PCR, and genomic analysis.

View Article and Find Full Text PDF

To date, high performance of full-scale aerobic granular sludge (AGS) technology has been demonstrated on a global scale. Its further integration with existing continuous flow activated sludge (CFAS) treatment plants is the next logical step. All granular sludge reactors operated in sequencing batch reactors (SBR) mode with anaerobic feeding conditions select for growth of phosphorus and glycogen accumulating organisms (PAO and GAO, respectively), which are known to enhance sludge settling characteristics.

View Article and Find Full Text PDF

Three types of nitrifying granules were grown on media simulating anaerobic digestion dewatering reject water and compared for their potential to increase nitrification capacity when added to mainstream flocculent activated sludge treatment. An advantage of nitrification bioaugmentation with sidestream granules instead of flocculent biomass is that the granules can be selectively maintained at longer retention times than flocs and thus provide higher nitrification capacity from bioaugmentation. The three granule types and feeding conditions were: nitrifying granules with aerobic feeding, nitrifying-denitrifying granules with anoxic feeding, and nitrifying-denitrifying/phosphate-accumulating (NDN-PAO) granules with anaerobic feeding.

View Article and Find Full Text PDF