Publications by authors named "H D Roffwarg"

Cells in the locus coeruleus (LC) constitute the sole source of norepinephrine (NE) in the brain and change their discharge rates according to vigilance state. In addition to its well established role in vigilance, NE affects synaptic plasticity in the postnatal critical period (CP) of development. One form of CP synaptic plasticity affected by NE results from monocular occlusion, which leads to physiological and cytoarchitectural alterations in central visual areas.

View Article and Find Full Text PDF

Work in this laboratory demonstrated a role for rapid eye movement sleep (REMS) in critical period (CP), postnatal days (P) 17-30, synaptic plasticity in visual cortex. Studies in adolescent rats showed that REMS deprivation (REMSD) reinitiates a developmentally regulated form of synaptic plasticity that otherwise is observed only in CP animals. Subsequent work added that REMSD affects inhibitory mechanisms that are thought to be involved in terminating the CP.

View Article and Find Full Text PDF

Development of the mammalian CNS requires formation and stabilization of neuronal circuits and synaptic connections. Sensory stimulation provided by the environment orchestrates neuronal circuit formation in the waking state. Endogenous sources of activation are also implicated in these processes.

View Article and Find Full Text PDF

Suppression of rapid eye movement sleep (REMS) in developing animals has both anatomical and physiological consequences. We have recently shown that initiating REMS deprivation (REMSD) prior to the end of the critical period in young rats delays termination of the critical period (CP) in visual cortex, and, consequently, the synaptic plasticity mechanisms that support a developmentally regulated form of long-term potentiation (LTP) are maintained in an immature state [J.P.

View Article and Find Full Text PDF