Variable renewable energy sources display different space-time variability driving the availability of energy generated from these sources. Complementarity among variable renewable energies in time and space allows reducing the variability of power supply and helps matching the electricity demand curve. This work investigates the temporal structure of complementarity along an alpine transect in North-East Italy, considering a 100% renewable energy mix scenario composed by photovoltaic and run-of-the-river energy.
View Article and Find Full Text PDFVariable energy sources such as solar and runoff sources are intermittent in time and space, following their driving hydro-meteorological processes. Recent research has shown that in mountainous areas the combination of solar and hydropower has large potential (termed complementarity) to cover the temporal variability of the energy load and, by this mean, to facilitate integration of renewables into the electricity network. Climate change is causing widespread glacier retreat, and much attention is devoted to negative impacts such as diminishing water resources and shifts in runoff seasonality.
View Article and Find Full Text PDF