The primary motivation for systematic bases in first principles electronic structure simulations is to derive physical and chemical properties of molecules and solids with predetermined accuracy. This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near coalescence points of particles. Singular analysis provides a convenient framework to study the asymptotic behaviour of wavefunctions near these singularities.
View Article and Find Full Text PDFThe identification of chemokines in blood platelets has strengthened our view of these cells as participants in immune host defense. Platelet chemokines representing prestored and rapidly releasable proteins may play a major role as first-line inflammatory mediators. This is evident from their capability to recruit early inflammatory cells such as neutrophil granulocytes and monocytes and even to exhibit direct antimicrobial activity.
View Article and Find Full Text PDFTensor product decompositions with optimal separation rank provide an interesting alternative to traditional Gaussian-type basis functions in electronic structure calculations. We discuss various applications for a new compression algorithm, based on the Newton method, which provides for a given tensor the optimal tensor product or so-called best separable approximation for fixed Kronecker rank. In combination with a stable quadrature scheme for the Coulomb interaction, tensor product formats enable an efficient evaluation of Coulomb integrals.
View Article and Find Full Text PDFIn this study, we have examined the major platelet-derived CXC chemokines connective tissue-activating peptide III (CTAP-III), its truncation product neutrophil-activating peptide 2 (CXC chemokine ligand 7 (CXCL7)), as well as the structurally related platelet factor 4 (CXCL4) for their impact on neutrophil adhesion to and transmigration through unstimulated vascular endothelium. Using monolayers of cultured HUVEC, we found all three chemokines to promote neutrophil adhesion, while only CXCL7 induced transmigration. Induction of cell adhesion following exposure to CTAP-III, a molecule to date described to lack neutrophil-stimulating capacity, depended on proteolytical conversion of the inactive chemokine into CXCL7 by neutrophils.
View Article and Find Full Text PDFIntracellular persistence of mycobacteria may result from an intricate balance between bacterial replication and signaling events leading to antimicrobial macrophage activities. Using human monocyte-derived macrophages, we investigated the relevance of mitogen-activated protein kinase activation for the growth control of Mycobacterium avium isolates differing in their abilities to multiply intracellularly. The highly replicative smooth transparent morphotype of M.
View Article and Find Full Text PDF