Publications by authors named "H D Brightbill"

Article Synopsis
  • Macrophages are diverse cells that inhabit all body tissues, with specific types residing in organs and additional subtypes recruited during injury.
  • A specific population of recruited macrophages, marked by certain gene expressions, has been linked to fibrosis in various injury and cancer models.
  • Blocking Notch2 increases these macrophages in the lungs, but evidence suggests they actually help reduce fibrosis rather than cause it, highlighting their potential protective role during lung injuries.
View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) is a promising target for treatment of obesity-associated diseases including metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. We evaluated the effects of the bispecific anti-FGF21-β klotho (KLB) agonist antibody bFKB1 in a preclinical model of MASH and atherosclerosis. Low-density lipoprotein receptor knockout (Ldlr-/-).

View Article and Find Full Text PDF

Wound healing in response to acute injury is mediated by the coordinated and transient activation of parenchymal, stromal, and immune cells that resolves to homeostasis. Environmental, genetic, and epigenetic factors associated with inflammation and aging can lead to persistent activation of the microenvironment and fibrosis. Here, we identify opposing roles of interleukin-4 (IL-4) cytokine signaling in interstitial macrophages and type II alveolar epithelial cells (ATIIs).

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is characterized by inflammation and fibrosis in the kidney. Renal biopsies and estimated glomerular filtration rate (eGFR) remain the standard of care, but these endpoints have limitations in detecting the stage, progression, and spatial distribution of fibrotic pathology in the kidney. MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo both in clinical and preclinical studies.

View Article and Find Full Text PDF

Background: Transforming growth factor β (TGF-β) is implicated as a key mediator of pathological fibrosis, but its pleiotropic activity in a range of homeostatic functions presents challenges to its safe and effective therapeutic targeting. There are three isoforms of TGF-β, TGF-β1, TGF-β2, and TGF-β3, which bind to a common receptor complex composed of TGF-βR1 and TGF-βR2 to induce similar intracellular signals in vitro. We have recently shown that the cellular expression patterns and activation thresholds of TGF-β2 and TGF-β3 are distinct from those of TGF-β1 and that selective short-term TGF-β2 and TGF-β3 inhibition can attenuate fibrosis in vivo without promoting excessive inflammation.

View Article and Find Full Text PDF