PLoS One
August 2016
Objective: Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance.
Materials And Methods: Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin.
In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing.
View Article and Find Full Text PDFIt is well known that mood disorders are highly prevalent in patients with epilepsy. Although several studies have aimed to characterize alterations in different types of receptors associated with both disturbances, there is a lack of studies focused on identifying the causes of this comorbidity. Here, we described some changes at the biochemical level involving serotonin, dopamine, and γ-aminobutyric acid (GABA) receptors as well as signal transduction mechanisms that may explain the coexistence of both epilepsy and mood disorders.
View Article and Find Full Text PDFIt is well known that angiotensin II (Angio II) mimics most of the muscarinic-mediated excitatory actions of acetylcholine on superior cervical ganglion neurons. For instance, in addition to depolarization and stimulation of norepinephrine release, muscarinic agonists and Angio II modulate the M-type K(+) current and the N-type Ca(2+) current. We recently found that muscarinic receptors modulate the delayed rectifier current I(KV) as well.
View Article and Find Full Text PDFBr J Pharmacol
October 2006
Background And Purpose: Resting superior cervical ganglion (SCG) neurones are phasic cells that switch to a tonic mode of firing upon muscarinic receptor stimulation. This effect is partially due to the muscarinic inhibition of the M-current. Because delayed rectifier K+ channels are essential to sustain tonic firing in central neurones, we asked whether the delayed rectifier current IKV in SCG neurones was modulated by the muscarinic receptors expressed in these cells.
View Article and Find Full Text PDF