Publications by authors named "H Crespi"

Coherent neutron scattering measurements of an amorphous, in vivo deuterated C-phycocyanin are compared with a calculation of the individual protein molecule's coherent static structure factor. Both show the significant features associated with known structure factors of several amorphous materials, most notably, an unusually sharp first diffraction peak occurring near 1.4 A(-1).

View Article and Find Full Text PDF

The spatial arrangement of subunits p51 and p66 of the HIV-1 reverse transcriptase and the position of the RNase H containing domain, p15, have been determined by means of neutron small-angle scattering. The reverse transcriptase (p66/p51) is a flat molecule, which can be approximated by an ellipsoid with the half axes of 5.2 nm, 4.

View Article and Find Full Text PDF

By means of neutron solution scattering we determined the position and orientation of core enzyme and sigma-factor within the Escherichia coli RNA polymerase holoenzyme with the aim of improving existing models. The individual components, core enzyme (E) and sigma-factor (sigma), were highlighted by deuterium labeling and their center-to-center distances determined in the monomeric and the dimeric holoenzyme. The following distance parameters were obtained: dE1-sigma 1 = 8.

View Article and Find Full Text PDF

We have observed Brillouin-like low frequency collective modes in the scattering of 1 A neutrons from a fully in vivo deuterated protein. These modes are tentatively interpreted as due to short-lived coherent excitations propagating with velocities between 2,000 and 4,000 m/s in elements of the secondary structure and patches of closely associated water.

View Article and Find Full Text PDF

Small-angle X-ray and neutron scattering data were used to study the solution structure of calmodulin complexed with a synthetic peptide corresponding to residues 577-603 of rabbit skeletal muscle myosin light chain kinase. The X-ray data indicate that, in the presence of Ca2+, the calmodulin-peptide complex has a structure that is considerably more compact than uncomplexed calmodulin. The radius of gyration, Rg, for the complex is approximately 20% smaller than that of uncomplexed Ca2+.

View Article and Find Full Text PDF