Publications by authors named "H Courtecuisse"

A fast and accurate fusion of intra-operative images with a pre-operative data is a key component of computer-aided interventions which aim at improving the outcomes of the intervention while reducing the patient's discomfort. In this paper, we focus on the problematic of the intra-operative navigation during abdominal surgery, which requires an accurate registration of tissues undergoing large deformations. Such a scenario occurs in the case of partial hepatectomy: to facilitate the access to the pathology, e.

View Article and Find Full Text PDF

An error-controlled mesh refinement procedure for needle insertion simulations is presented. As an example, the procedure is applied for simulations of electrode implantation for deep brain stimulation. We take into account the brain shift phenomena occurring when a craniotomy is performed.

View Article and Find Full Text PDF

Purpose: During brain tumor surgery, planning and guidance are based on preoperative images which do not account for brain-shift. However, this deformation is a major source of error in image-guided neurosurgery and affects the accuracy of the procedure. In this paper, we present a constraint-based biomechanical simulation method to compensate for craniotomy-induced brain-shift that integrates the deformations of the blood vessels and cortical surface, using a single intraoperative ultrasound acquisition.

View Article and Find Full Text PDF

Objective: To present the first a posteriori error-driven adaptive finite element approach for real-time simulation, and to demonstrate the method on a needle insertion problem.

Methods: We use corotational elasticity and a frictional needle/tissue interaction model. The problem is solved using finite elements within SOFA.

View Article and Find Full Text PDF

We present a method allowing for intra-operative targeting of a specific anatomical feature. The method is based on a registration of 3D pre-operative data to 2D intra-operative images. Such registration is performed using an elastic model reconstructed from the 3D images, in combination with sliding constraints imposed via Lagrange multipliers.

View Article and Find Full Text PDF