Purpose: To develop a generic radial sampling scheme that combines the advantages of golden ratio sampling with simplicity of equidistant angular patterns. The irrational angle between consecutive spokes in golden ratio-based sampling schemes enables a flexible retrospective choice of temporal resolution, while preserving good coverage of k-space for each individual bin. Nevertheless, irrational increments prohibit precomputation of the point-spread function (PSF), can lead to numerical problems, and require more complex processing steps.
View Article and Find Full Text PDFPurpose: To develop a generic radial sampling scheme that combines the advantages of golden ratio sampling with simplicity of equidistant angular patterns. The irrational angle between consecutive spokes in golden ratio based sampling schemes enables a flexible retrospective choice of temporal resolution, while preserving good coverage of k-space for each individual bin. Nevertheless, irrational increments prohibit precomputation of the point-spread function (PSF), can lead to numerical problems, and require more complex processing steps.
View Article and Find Full Text PDFPurpose: To develop a free-breathing myocardial mapping technique using inversion-recovery (IR) radial fast low-angle shot (FLASH) and calibrationless motion-resolved model-based reconstruction.
Methods: Free-running (free-breathing, retrospective cardiac gating) IR radial FLASH is used for data acquisition at 3T. First, to reduce the waiting time between inversions, an analytical formula is derived that takes the incomplete recovery into account for an accurate calculation.
Purpose: To develop a deep-learning-based image reconstruction framework for reproducible research in MRI.
Methods: The BART toolbox offers a rich set of implementations of calibration and reconstruction algorithms for parallel imaging and compressed sensing. In this work, BART was extended by a nonlinear operator framework that provides automatic differentiation to allow computation of gradients.
Purpose: To develop a single-shot multi-slice mapping method by combing simultaneous multi-slice (SMS) excitations, single-shot inversion-recovery (IR) radial fast low-angle shot (FLASH), and a nonlinear model-based reconstruction method.
Methods: SMS excitations are combined with a single-shot IR radial FLASH sequence for data acquisition. A previously developed single-slice calibrationless model-based reconstruction is extended to SMS, formulating the estimation of parameter maps and coil sensitivities from all slices as a single nonlinear inverse problem.