The present study is aimed at developing an innovative method for efficient cancer cell destruction by exploiting the magnetomechanical actuation (MMA) of Fe-Cr-Nb-B magnetic particles (MPs), which are loaded with clinically approved chemotherapeutic drugs. To achieve this objective, FeCrNbB magnetic nanoparticles were produced by mechanically grinding amorphous ribbon precursors with the same composition. These nanoparticles display high anisotropy, a parallelepipedic shape with an amorphous structure, and a ferromagnetic behavior.
View Article and Find Full Text PDFRemote magneto-mechanical actuation (MMA) of magnetic nanoparticles (MNP) is emerging as a promising therapy method in oncology. However, translation to the clinic faces the challenge of whole-body action and the reluctance about indiscriminate mechanical action of the nanoparticles on tumor and healthy cells. Here, we show how the MMA method based on magnetically-rotated gold-coated MNP boosts only the activity of an unbound antitumor drug, without physical damage of cells via MNP.
View Article and Find Full Text PDFIn this work, we focus on a detailed study of the role of each component layer in the multilayer structure of a magnetic tunnel junction (MTJ) as well as the analysis of the effects that the deposition parameters of the thin films have on the performance of the structure. Various techniques including atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate the effects of deposition parameters on the surface roughness and thickness of individual layers within the MTJ structure. Furthermore, this study investigates the influence of thin films thickness on the magnetoresistive properties of the MTJ structure, focusing on the free ferromagnetic layer and the barrier layer (MgO).
View Article and Find Full Text PDFIn this paper, we report for the first time on the theoretical and experimental investigation of FeSiB amorphous glass-coated nanowires by analyzing samples with the same diameters in both cases. The hysteresis curves, the dependence of the switching field values on nanowire dimensions, and the effect of the magnetoelastic anisotropy on the magnetization processes were analyzed and interpreted to explain the magnetization reversal in highly magnetostrictive amorphous nanowires prepared in cylindrical shape by rapid quenching from the melt. All the measured samples were found to be magnetically bistable, being characterized by rectangular hysteresis loops.
View Article and Find Full Text PDFResults on the magnetic domain walls in rapidly solidified magnetostrictive and non-magnetostrictive amorphous submicronic wires are reported. Utilizing Lorentz transmission electron microscopy (LTEM) for the first time in this context, we have visualized and analyzed the domain walls in such ultra-thin amorphous wires. All the investigated samples display vortex magnetic domain walls, regardless of wire composition or diameter.
View Article and Find Full Text PDF