The development of new Drug Delivery Systems (DDS) by incorporating microparticles within hydrogels can prolong the release rate of drugs and/or other bioactive agents. In this study, we combined gellan gum/alginate microparticles within a thermoresponsive chitosan (Ch) hydrogel with β-Glycerophosphate (β-GP), designing the system to be in the sol state at 21 °C and in the gel state at 37 °C to enable the injectability of the system. The system was in the sol state between 10 °C and 21 °C.
View Article and Find Full Text PDFCancer is a disease that continues to greatly impact our society. Developing new and more personalized treatment options is crucial to decreasing the cancer burden. In this study, we combined magnetic polysaccharide microparticles with a Pluronic thermoresponsive hydrogel to develop a multifunctional, injectable drug delivery system (DDS) for magnetic hyperthermia applications.
View Article and Find Full Text PDFBiopolymers present ideal properties to be used in wound dressing solutions. By mixing two oppositely charged macromolecules it is possible to form polyelectrolyte complex (PEC) based cryogels using lyophilization. Their application in the biomedical field is limited due to their sterilization requirements, as conventional methods compromise their physicochemical properties.
View Article and Find Full Text PDFGellan gum is a biocompatible and easily accessible polysaccharide with excellent properties to produce microparticles as drug delivery systems. However, the production methods often fail in reproducibility, compromising the translational potential of such systems. In this work, the production of gellan gum-based microparticles was optimized using the coaxial air flow method, and an inexpensive and reproducible production method.
View Article and Find Full Text PDFEncapsulation in agriculture today is practically focused on agrochemicals such as pesticides, herbicides, fungicides, or fertilizers to enhance the protective or nutritive aspects of the entrapped active ingredients. However, one of the most promising and environmentally friendly technologies, biostimulants, is hardly explored in this field. Encapsulation of biostimulants could indeed be an excellent means of counteracting the problems posed by their nature: they are easily biodegradable, and most of them run off through the soil, losing most of the compounds, thus becoming inaccessible to plants.
View Article and Find Full Text PDF