The standard primitives of quantum computing include deterministic unitary entangling gates, which are not natural operations in many systems including photonics. Here, we present fusion-based quantum computation, a model for fault tolerant quantum computing constructed from physical primitives readily accessible in photonic systems. These are entangling measurements, called fusions, which are performed on the qubits of small constant sized entangled resource states.
View Article and Find Full Text PDFOptical absorption measurements characterize a wide variety of systems from atomic gases to in vivo diagnostics of living organisms. Here we study the potential of nonclassical techniques to reduce statistical noise below the shot-noise limit in absorption measurements with concomitant phase shifts imparted by a sample. We consider both cases where there is a known relationship between absorption and a phase shift, and where this relationship is unknown.
View Article and Find Full Text PDFWe explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g.
View Article and Find Full Text PDFWe show how an idealized measurement procedure can condense photons from two modes into one and how, by feeding forward the results of the measurement, it is possible to generate efficiently superposition states commonly called N00N states. For the basic procedure sources of number states leak onto a beam splitter, and the output ports are monitored by photodetectors. We find that detecting a fixed fraction of the input at one output port suffices to direct the remainder to the same port, with high probability, however large the initial state.
View Article and Find Full Text PDF