Publications by authors named "H C von Knobloch"

Urachal adenocarcinomas (UrC) are rare but aggressive. Despite being of profound therapeutic relevance, UrC cannot be differentiated by histomorphology alone from other adenocarcinomas of differential diagnostic importance. As no reliable tissue-based diagnostic biomarkers are available, we aimed to detect such by integrating mass-spectrometry imaging-based metabolomics and digital pathology, thus allowing for a multimodal approach on the basis of spatial information.

View Article and Find Full Text PDF

The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians), magnocellular neurosecretory neurons producing homologs of oxytocin reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds, and mammals) into the paraventricular and supraoptic nuclei with accessory nuclei (AN) between them.

View Article and Find Full Text PDF

The hypothalamic neuropeptide oxytocin (OT), which controls childbirth and lactation, receives increasing attention for its effects on social behaviors, but how it reaches central brain regions is still unclear. Here we gained by recombinant viruses selective genetic access to hypothalamic OT neurons to study their connectivity and control their activity by optogenetic means. We found axons of hypothalamic OT neurons in the majority of forebrain regions, including the central amygdala (CeA), a structure critically involved in OT-mediated fear suppression.

View Article and Find Full Text PDF

Recent studies in vitro have shown that the cAMP response element-binding (CREB) co-activator, transducer of regulated CREB activity (TORC), is required for transcriptional activation of the corticotrophin-releasing hormone (CRH) gene. To determine the physiological importance of TORC2 regulating CRH transcription during stress, we examined the localisation of TORC2 in CRH neurones, as well as the relationship between changes in CRH heterogeneous nuclear (hn)RNA, nuclear translocation of TORC2 and binding of TORC2 to the CRH promoter. Immunohistochemistry revealed TORC2 immunoreactivity (irTORC2) in the dorsolateral (magnocellular) and dorsomedial (parvocellular) regions of the hypothalamic paraventricular nucleus (PVN).

View Article and Find Full Text PDF