The use of bioelectrical impedance analysis (BIA) is now well established in healthcare as an essential support tool for patient management in various clinical settings. Its use in sports is rapidly expanding due to the valuable insights it offers, helping to better structure athletes' diets and training programs, thereby optimizing their performance. In the context of sport, however, there is a consensus regarding the importance of proper interpretation of BIA-derived data, which cannot be limited to mere estimation of body composition.
View Article and Find Full Text PDFBackground & Aims: Athletes are commonly exposed to exercise-induced dehydration. However, the best method to detect dehydration under this circumstance is not clear. This study aimed to analyze pre- and post-dehydration measurements of biomarkers, including saliva osmolality (SOsm), urine osmolality (UOsm), urine-specific gravity (USG), urine color (Ucolor), serum osmolality (SeOsm), serum arginine vasopressin (AVP), serum sodium (Na), and thirst sensation in underhydrated athletes, using the body mass loss (BML) as the reference method.
View Article and Find Full Text PDFThe effects of acute dehydration on neuromuscular function have been studied. However, whether the mechanisms underpinning such function are central or peripheral is still being determined, and the results are inconsistent. This systematic review aims to elucidate the influence of acute dehydration on neuromuscular function, including a novel aspect of investigating the central and peripheral neuromuscular mechanisms.
View Article and Find Full Text PDFBackground And Aims: Measurement of body composition using computed tomography (CT) scans may be a viable clinical tool for low muscle mass assessment in oncology. However, longitudinal assessments are often infeasible with CT. Clinically accessible body composition technologies can be used to track changes in fat-free mass (FFM) or muscle, though their accuracy may be impacted by cancer-related physiological changes.
View Article and Find Full Text PDFThe appropriate use of predictive equations in estimating body composition through bioelectrical impedance analysis (BIA) depends on the device used and the subject's age, geographical ancestry, healthy status, physical activity level and sex. However, the presence of many isolated predictive equations in the literature makes the correct choice challenging, since the user may not distinguish its appropriateness. Therefore, the present systematic review aimed to classify each predictive equation in accordance with the independent parameters used.
View Article and Find Full Text PDF