The recycling of low-concentration coal-bed methane (CBM) is environmentally beneficial and plays a crucial role in optimizing the energy mix. In this work, we present a strategy involving pore chemical modification to synthesize a series of bimetallic diamond coordination networks, namely CuIn(ina), CuIn(3-ain), and CuIn(3-Fina) (where ina = isonicotinic acid, 3-ain = 3-amino-isonicotinic acid, and 3-Fina = 3-fluoroisonicotinic acid). Among these, the amino-functionalized CuIn(3-ain) exhibits excellent CH adsorption capacity (1.
View Article and Find Full Text PDFGraph Neural Networks (GNNs) have received extensive research attention due to their powerful information aggregation capabilities. Despite the success of GNNs, most of them suffer from the popularity bias issue in a graph caused by a small number of popular categories. Additionally, real graph datasets always contain incorrect node labels, which hinders GNNs from learning effective node representations.
View Article and Find Full Text PDFPotassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).
View Article and Find Full Text PDFBackground: Treatment outcomes for acute promyelocytic leukemia (APL) have improved with all-trans-retinoic acid and arsenic trioxide, yet relapse remains a concern, especially in pediatric patients. The prognostic value of minimal residual disease (MRD) post-induction and the impact of arsenic levels during induction on MRD are not fully understood.
Objectives: To evaluate the relationship between post-induction MRD levels and relapse-free survival (RFS) in pediatric APL patients, and to investigate the correlation between blood arsenic concentration levels during induction therapy and MRD status.
The outbreak of novel infectious diseases presents major public health challenges, highlighting the urgency of accelerating vaccination efforts to reduce morbidity and mortality. Vaccine allocation has become a crucial societal concern. This paper introduces a dynamic vaccine allocation model that considers demand uncertainty and vaccination willingness, focusing on the trade-off between fairness and efficiency.
View Article and Find Full Text PDF