J Clin Pharmacol
November 2024
Antibody-drug conjugates (ADCs) have become a vital class of therapeutics in oncology because of their ability to selectively deliver potent drug molecules to tumor cells. However, ADC-associated toxicities cause high failure rates in the clinic and hinder their full potential. Due to the complex structure and pharmacokinetics of ADCs, it is challenging to identify the drivers of their toxicities.
View Article and Find Full Text PDFPharmaceutical companies routinely screen compounds for hemodynamics related safety risk. secondary pharmacology is initially used to prioritize compounds while studies are later used to quantify and translate risk to humans. This strategy has shown limitations but could be improved via the incorporation of molecular findings in the animal-based toxicological risk assessment.
View Article and Find Full Text PDFT-cell engagers (TCEs) represent a promising therapeutic strategy for various cancers and autoimmune disorders. These bispecific antibodies act as bridges, connecting T-cell receptors (TCRs) to target cells (either malignant or autoreactive) via interactions with specific tumour-associated antigens (TAAs) or autoantigens to form trimeric synapses, or trimers, that co-localise T-cells with target cells and stimulate their cytotoxic function. Bispecific TCEs are expected to exhibit a bell-shaped dose-response curve, with a defined optimal TCE exposure for maximizing trimer formation.
View Article and Find Full Text PDFAssociation between measurable residual disease (MRD) and survival outcomes in chronic lymphocytic leukemia (CLL) has often been reported. However, limited quantitative analyses over large datasets have been undertaken to establish the predictive power of MRD. Here, we provide a comprehensive assessment of published MRD data to explore the utility of MRD in the prediction of progression-free survival (PFS).
View Article and Find Full Text PDF