MINERvA has measured the ν_{μ}-induced coherent π^{+} cross section simultaneously in hydrocarbon (CH), graphite (C), iron (Fe), and lead (Pb) targets using neutrinos from 2 to 20 GeV. The measurements exceed the predictions of the Rein-Sehgal and Berger-Sehgal PCAC based models at multi-GeV ν_{μ} energies and at produced π^{+} energies and angles, E_{π}>1 GeV and θ_{π}<10°. Measurements of the cross-section ratios of Fe and Pb relative to CH reveal the effective A scaling to increase from an approximate A^{1/3} scaling at few GeV to an A^{2/3} scaling for E_{ν}>10 GeV.
View Article and Find Full Text PDFNeutrino-induced charged-current single π^{+} production in the Δ(1232) resonance region is of considerable interest to accelerator-based neutrino oscillation experiments. In this Letter, high statistic differential cross sections are reported for the semiexclusive reaction ν_{μ}A→μ^{-}π^{+}+ nucleon(s) on scintillator, carbon, water, iron, and lead targets recorded by MINERvA using a wideband ν_{μ} beam with ⟨E_{ν}⟩≈6 GeV. Suppression of the cross section at low Q^{2} and enhancement of low T_{π} are observed in both light and heavy nuclear targets compared with phenomenological models used in current neutrino interaction generators.
View Article and Find Full Text PDFEur Phys J C Part Fields
June 2023
The ICARUS collaboration employed the 760-ton T600 detector in a successful 3-year physics run at the underground LNGS laboratory, performing a sensitive search for LSND-like anomalous appearance in the CERN Neutrino to Gran Sasso beam, which contributed to the constraints on the allowed neutrino oscillation parameters to a narrow region around 1 eV. After a significant overhaul at CERN, the T600 detector has been installed at Fermilab. In 2020 the cryogenic commissioning began with detector cool down, liquid argon filling and recirculation.
View Article and Find Full Text PDFThis Letter presents the first simultaneous measurement of the quasielasticlike neutrino-nucleus cross sections on C, water, Fe, Pb, and scintillator (hydrocarbon or CH) as a function of longitudinal and transverse muon momentum. The ratio of cross sections per nucleon between Pb and CH is always above unity and has a characteristic shape as a function of transverse muon momentum that evolves slowly as a function of longitudinal muon momentum. The ratio is constant versus longitudinal momentum within uncertainties above a longitudinal momentum of 4.
View Article and Find Full Text PDF