Filamentous fungi cultivated as biopellets are well established in biotechnology industries. A distinctive feature of filamentous fungi is that hyphal growth and fungal morphology affect product titers and require tailored process conditions. Within the pellet, mass transfer, substrate consumption, and biomass formation are intricately linked to the local hyphal fraction and pellet size.
View Article and Find Full Text PDFCrystallization is a commonly used unit operation for separation and purification. During processing, crystals may break due to mechanical stress, e.g.
View Article and Find Full Text PDFControlling the morphology of filamentous fungi is crucial to improve the performance of fungal bioprocesses. Microparticle-enhanced cultivation (MPEC) increases productivity, most likely by changing the fungal morphology. However, due to a lack of appropriate methods, the exact impact of the added microparticles on the structural development of fungal pellets is mostly unexplored.
View Article and Find Full Text PDFBackground: Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes.
View Article and Find Full Text PDFThe aroma of red wine results from the intricate interplay between aroma compounds (odorants) and complex polymers generated during fermentation. This study combines density functional theory (DFT), human sensory experiments, and nuclear magnetic resonance to investigate the impact of odorant-polymer interactions on wine aroma. Molecular aggregation patterns of odorants with polymer segments are identified, indicating the crucial role of intermolecular noncovalent interactions, such as hydrogen bonds and van der Waals interactions, in stabilizing odorant-polymer conformations.
View Article and Find Full Text PDF