Publications by authors named "H Boukhaddaoui"

Article Synopsis
  • Inherited retinal diseases (IRDs) cause people to lose their vision slowly, and there are over 270 genes that can cause these problems.
  • One specific gene, RLBP1, leads to different eye disorders depending on changes in that gene, affecting proteins important for seeing.
  • Researchers created a method to treat these disorders using gene therapy, and they discovered a new form of the CRALBP protein that could help improve treatments in both humans and mice.
View Article and Find Full Text PDF

The cornea is a transparent tissue that covers the eye and is crucial for clear vision. It is the most innervated tissue in the body. This innervation provides sensation and trophic function to the eye and contributes to preserving corneal integrity.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell-derived (iPSC-derived) retinal models.

View Article and Find Full Text PDF

Traumatic spinal cord injury (SCI) induces irreversible autonomic and sensory-motor impairments. A large number of patients exhibit chronic SCI and no curative treatment is currently available. Microglia are predominant immune players after SCI, they undergo highly dynamic processes, including proliferation and morphological modification.

View Article and Find Full Text PDF

Background: Human-induced pluripotent stem cell-derived retinal organoids are a valuable tool for disease modelling and therapeutic development. Many efforts have been made over the last decade to optimise protocols for the generation of organoids that correctly mimic the human retina. Most protocols use common media supplements; however, protocol-dependent variability impacts data interpretation.

View Article and Find Full Text PDF