Urine is a highly suitable biological matrix for metabolomics studies. Total collection for 24-h periods is the gold standard as it ensures the presence of all metabolites excreted throughout the day. However, in animal studies, it presents limitations related to animal welfare and also due to alterations of the metabolome originating from the use of acid for preventing microbial growth or microbial contamination.
View Article and Find Full Text PDFMetabolome profiling in biological fluids is an interesting approach for exploring markers of methane emissions in ruminants. In this study, a multiplatform metabolomics approach was used for investigating changes in milk metabolic profiles related to methanogenesis in dairy cows. For this purpose, 25 primiparous Holstein cows at similar lactation stage were fed the same diet supplemented with (treated, n = 12) or without (control, n = 13) a specific antimethanogenic additive that reduced enteric methane production by 23% with no changes in intake, milk production, and health status.
View Article and Find Full Text PDFRecent evidence suggests that changes in microbial colonization of the rumen prior to weaning may imprint the rumen microbiome and impact phenotypes later in life. We investigated how dietary manipulation from birth influences growth, methane production, and gastrointestinal microbial ecology. At birth, 18 female Holstein and Montbéliarde calves were randomly assigned to either treatment or control (CONT).
View Article and Find Full Text PDFThe quality of milk metabolome analyzed by nuclear magnetic resonance (NMR) is greatly influenced by the way samples are prepared. Although this analytical method is increasingly used to study milk metabolites, a thorough examination of available sample preparation protocols for milk has not been reported yet. We evaluated the performance of eight milk preparation methods namely (1) raw milk without any processing; (2) skimmed milk; (3) ultrafiltered milk; (4) skimming followed by ultrafiltration; (5) ultracentrifuged milk; (6) methanol; (7) dichloromethane; and (8) methanol/dichloromethane, in terms of spectra quality, repeatability, signal-to-noise ratio, extraction efficiency and yield criteria.
View Article and Find Full Text PDF