Publications by authors named "H Bollinedi"

Article Synopsis
  • Rice is a vital food source for over 50% of the global population, but its high glycemic index poses challenges for diabetic and obese individuals, necessitating the development of low-GI rice varieties through understanding starch biogenesis.
  • A study of 200 rice genotypes focused on starch content and categorized them into three groups based on amylose content, leading to the selection of specific genotypes for further analysis of resistant starch levels, protein content, and fatty acid profiles.
  • Results showed varying levels of resistant starch and fatty acids, with specific genotypes demonstrating significant enzymatic activity related to starch biosynthesis, highlighting genetic variations that can influence rice quality traits.
View Article and Find Full Text PDF

Direct-seeded rice (DSR) is gaining popularity among farmers due to its environmentally safe and resource-efficient production system. However, managing the rice root-knot nematode (RRKN), , remains a major challenge in DSR cultivation. Developing genetic resistance is a pragmatic and effective approach compared to using hazardous pesticides.

View Article and Find Full Text PDF

Bakanae disease caused by is an emerging disease of rice causing losses in all rice-growing regions around the world. A BCF population was developed by backcrossing the recurrent parent Pusa Basmati 1121 (PB1121) with the recombinant inbred line RIL28, which harbors a major quantitative trait locus (QTL) governing resistance to bakanae, . MassARRAY-based single-nucleotide polymorphism (SNP) assays targeting the genomic region of helped in fine mapping the QTL to a region of 130 kb between the SNP markers and using 24 recombinants.

View Article and Find Full Text PDF

Pusa Basmati 1509 (PB1509) is one of the major foreign-exchange-earning varieties of Basmati rice; it is semi-dwarf and early maturing with exceptional cooking quality and strong aroma. However, it is highly susceptible to various biotic stresses including bacterial blight and blast. Therefore, bacterial blight resistance genes, namely, + and , and fungal blast resistance genes + and were incorporated into the genetic background of recurrent parent (RP) PB1509 using donor parents, namely, Pusa Basmati 1718 (PB1718), Pusa 1927 (P1927), Pusa 1929 (P1929) and Tetep, respectively.

View Article and Find Full Text PDF

The Indian subcontinent is the primary center of origin of rice where huge diversity is found in the Indian rice gene pool, including landraces. North Eastern States of India are home to thousands of rice landraces which are highly diverse and good sources of nutritional traits, but most of them remain nutritionally uncharacterized. Hence, nutritional profiling of 395 Assam landraces was done for total starch, amylose content (AC), total dietary fiber (TDF), total protein content (TPC), oil, phenol, and total phytic acid (TPA) using official AOAC and standard methods, where the mean content for the estimated traits were found to be 75.

View Article and Find Full Text PDF