Platinum(IV) anticancer agents have demonstrated the potential to overcome the limitations associated with the widely used Pt(II) chemotherapeutics, cisplatin, carboplatin, and oxaliplatin. In order to identify therapeutic scenarios where this type of chemotherapy can be applied, an improved understanding on the intracellular reduction of Pt(IV) complexes is needed. Here, we report the synthesis of two fluorescence responsive oxaliplatin(IV)(OxPt) complexes, OxaliRes and OxaliNap.
View Article and Find Full Text PDFPurpose: DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy.
View Article and Find Full Text PDFHypoxia (low oxygen levels) occurs in a range of biological contexts, including plants, bacterial biofilms, and solid tumors; it elicits responses from these biological systems that impact their survival. For example, conditions of low oxygen make treating tumors more difficult and have a negative impact on patient prognosis. Therefore, chemical probes that enable the study of biological hypoxia are valuable tools to increase the understanding of disease-related conditions that involve low oxygen levels, ultimately leading to improved diagnosis and treatment.
View Article and Find Full Text PDFAryl boronate fluorescent probes allow the non-invasive study of dynamic cellular processes involving the reactive species, hydrogen peroxide (HO) and peroxynitrite (ONOO). However, the ability of these probes to differentiate between these two species remains unclear. Here, we report a boronate-functionalised hemicyanine dye (HD-BPin) as a potential strategy to distinguish between HO at 704 nm (red channel) and ONOO at 460 nm (blue channel) in solution and in cells.
View Article and Find Full Text PDFRegions of low oxygen (hypoxia) are found in >50% of breast tumours, most frequently in the more aggressive triple negative breast cancer subtype (TNBC). Metastasis is the cause of 90% of breast cancer patient deaths. Regions of tumour hypoxia tend to be more acidic and both hypoxia and acidosis increase tumour metastasis.
View Article and Find Full Text PDF