This study investigates the potential relationship between exposure to polycyclic aromatic hydrocarbons (PAHs), specifically monohydroxylated metabolites (OH-PAHs), in urine, and the prevalence of respiratory diseases in 2-year-old children residing in two locations within the Czech Republic - České Budějovice (control location) and the historically contaminated mining district of Most. Despite current air quality and lifestyle similarities between the two cities, our research aims to uncover potential long-term health effects, building upon previous data indicating distinctive patterns in the Most population. A total of 248 urine samples were analysed for the presence of 11 OH-PAHs.
View Article and Find Full Text PDFEmissions from modern gasoline engines represent an environmental and health risk. In this study, we aimed to compare the toxicity of organic compound mixtures extracted from particulate matter (PM extracts) produced by neat gasoline (E0) and a blend containing 15% ethanol (E15), which is offered as an alternative to non-renewable fossil fuels. Human lung BEAS-2B cells were exposed to PM extracts, and biomarkers of genotoxicity, such as DNA damage evaluated by comet assay, micronuclei formation, levels of phosphorylated histone H2AX, the expression of genes relevant to the DNA damage response, and exposure to polycyclic aromatic hydrocarbons (PAHs), were determined.
View Article and Find Full Text PDFBackground And Objectives: It has long been known that airborne polycyclic aromatic hydrocarbons (PAHs) can negatively affect pregnancy and birth outcomes, such as birth weight, fetal development, and placental growth factors. However, similar studies yield divergent results. Our goal was to estimate the amount of monohydroxylated PAH (OH-PAH) metabolites in the urine of pregnant women/mothers and their newborns in relation to birth outcomes, such as placenta weight, Apgar 5', and the growth parameters of children up to the age of two.
View Article and Find Full Text PDFDNA damage can impair normal cellular functions and result in various pathophysiological processes including cardiovascular diseases and cancer. We compared the genotoxic potential of diverse DNA damaging agents, and focused on their effects on the DNA damage response (DDR) and cell fate in human lung cells BEAS-2B. Polycyclic aromatic hydrocarbons [PAHs; benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP)] induced DNA strand breaks and oxidative damage to DNA; anticancer drugs doxorubicin (DOX) and 5-bromo-2'-deoxyuridine (BrdU) were less effective.
View Article and Find Full Text PDFPulmonary fibrosis (PF) is a chronic, irreversible lung disease that is typically fatal and characterized by an abnormal fibrotic response. As a result, vast areas of the lungs are gradually affected, and gas exchange is impaired, making it one of the world's leading causes of death. This can be attributed to a lack of understanding of the onset and progression of the disease, as well as a poor understanding of the mechanism of adverse responses to various factors, such as exposure to allergens, nanomaterials, environmental pollutants, etc.
View Article and Find Full Text PDF