Publications by authors named "H Badri Ghavifekr"

In this study, we developed a low-cost and easy-to-use capacitive biosensor employing printed-circuit-board (PCB)-based technique for electrode fabrication and a specific alternative current (AC) signal for AC Electrokinetics (ACEK) effect excitation. Fast, accurate, and highly sensitive detection and quantification of bisphenol A (BPA) was achieved. An easy characterization of the biofunctionalization process is introduced by measuring interfacial capacitance which is simple and superior to most of methods currently in use.

View Article and Find Full Text PDF

The ability to control and pump high ionic strength fluids inside microchannels forms a major advantage for clinical diagnostics and drug screening processes, where high conductive biological and physiological buffers are used. Despite the known potential of AC electro-thermal (ACET) effect in different biomedical applications, comparatively little is known about controlling the velocity and direction of fluid inside the chip. Here, we proposed to discretize the conventional electrodes to form various asymmetric electrode structures in order to control the fluid direction by simple switching the appropriate electric potential applied to the discretized electrodes.

View Article and Find Full Text PDF

DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene.

View Article and Find Full Text PDF

In recent years, demand for biological sensors which are capable of fast and accurate detection of minor amounts of pathogens in real-time form has been intensified. Acoustic wave (AW) devices whose performance is determined by mass sensitivity parameters and quality factor are used in biological sensors as platforms with high quality. Yet, current AW devices are facing many challenges such as the low value of their quality factor in practical applications and also their difficulty to use in liquids.

View Article and Find Full Text PDF

Misalignment is a problematic challenge in RF MEMS resonators. It causes asymmetry in the ultra symmetric radial contour mode disk resonators and degrades their performance by increasing the insertion loss and decreasing their quality factors (Q). Self-alignment method seems to be a good solution for misalignment problem, but it cannot be directly applied on high performance ring shape anchored resonators.

View Article and Find Full Text PDF