Publications by authors named "H B Lillywhite"

Lepidosaurian reptiles, particularly snakes, periodically shed the outer epidermal layers of their skin (ecdysis) to restore or enhance vital functions such as regulating water and gaseous exchange, growth, and protection against insult, infection or physical injury. Although many studies have focused on the nature and mechanisms of skin shedding, little attention has been paid to the timing of the first ecdysis in neonates following birth or hatching. A recent study investigated patterns of the time to first postnatal ecdysis in snakes based on a large dataset taken from the literature.

View Article and Find Full Text PDF

The advanced snakes (Alethinophidia) include the extant snakes with a highly evolved head morphology providing increased gape and jaw flexibility. Along with other physiological and morphological adaptations, this allows them to immobilize, ingest, and transport prey that may be disproportionately large or presents danger to the predator from bites, teeth, horns, or spines. Reported incidents of snakes failing to consume prey and being injured or killed during feeding mostly reflect information in the form of natural-history notes.

View Article and Find Full Text PDF

Sublethal dehydration can cause negative physiological effects, but recent studies investigating the sub-lethal effects of dehydration on innate immune performance in reptiles have found a positive correlation between innate immune response and plasma osmolality. To investigate whether this is an adaptive trait that evolved in response to dehydration in populations inhabiting water-scarce environments, we sampled free-ranging cottonmouth snakes (n=26 adult cottonmouths) from two populations inhabiting contrasting environments in terms of water availability: Snake Key (n=12), an island with no permanent sources of fresh water, and Paynes Prairie (n=14), a flooded freshwater prairie. In addition to field surveys, we manipulated the hydration state of 17 cottonmouths (Paynes Prairie n=9, Snake Key n=8) in a laboratory setting and measured the response of corticosterone and innate immune performance to dehydration with the aim of identifying any correlation or trade-offs between them.

View Article and Find Full Text PDF

Species that are distributed over wide geographical ranges are likely to encounter a greater diversity of environmental conditions than do narrowly distributed taxa, and thus we expect a correlation between size of geographical range and breadth of physiological tolerances to abiotic challenges. That correlation could arise either because higher physiological capacity enables range expansion, or because widely distributed taxa experience more intense (but spatially variable) selection on physiological tolerances. The invasion of oceanic habitats by amniotic vertebrates provides an ideal system with which to test the predicted correlation between range size and physiological tolerances, because all three lineages that have secondarily moved into marine habitats (mammals, birds, reptiles) exhibit morphological and physiological adaptations to excrete excess salt.

View Article and Find Full Text PDF

We quantified drinking behavior in three species of North American watersnakes: , which is a marine or brackish water amphibious species, and and , both freshwater amphibious species. All three species have relatively small and similar thresholds of dehydration (TH, approximately -4% loss of body mass) that elicit thirst and drinking of fresh water. These species have higher thirst sensitivity than several species of hydrophiine and laticaudine sea snakes, which are characterized by much lower TH (greater dehydration, -9% to <-20%).

View Article and Find Full Text PDF