Publications by authors named "H Atomi"

Unlabelled: Tetrahydrofolate is a cofactor involved in C metabolism including biosynthesis pathways for adenine and serine. In the classical tetrahydrofolate biosynthesis pathway, the steps removing three phosphate groups from the precursor 7,8-dihydroneopterin triphosphate (DHNTP) remain unclear in many bacteria. DHNTP pyrophosphohydrolase hydrolyzes pyrophosphate from DHNTP and produces 7,8-dihydroneopterin monophosphate.

View Article and Find Full Text PDF

Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles.

View Article and Find Full Text PDF

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon , we identified an enzyme which we designate "arginine synthetase".

View Article and Find Full Text PDF

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon , an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway.

View Article and Find Full Text PDF

Microfluidic capillary electrophoresis-mass spectrometry (CE-MS) is a rapid and highly accurate method to determine isotopomer patterns in isotopically labeled compounds. Here, we developed a novel method for tracer-based metabolomics using CE-MS for underivatized proteinogenic amino acids. The method consisting of a ZipChip CE system and a high-resolution Orbitrap Fusion Tribrid mass spectrometer allows us to obtain highly accurate data from 1 μl of 100 nmol/l amino acids comparable to a mere 1 [Formula: see text] 10-10 prokaryotic cells.

View Article and Find Full Text PDF