Anticoagulant mechanism of the coagulation factor IX/factor X-binding protein (IX/X-bp) isolated from the venom of Trimeresurus flavoviridis was investigated. IX/X-bp had no effect on the amidase activity of factor Xa measured with a synthetic peptide substrate Boc-Leu-Gly-Arg-pNA. Prothrombin activation by factor Xa without cofactors, such as factor Va and phospholipids, was only slightly influenced by IX/X-bp.
View Article and Find Full Text PDFAdenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells.
View Article and Find Full Text PDFBlood coagulation factor IX (FIX) undergoes various post-translational modifications such as gamma-carboxylation and glycosylation. Non-phosphorylated recombinant FIX has been reported to rapidly disappear from plasma, indicating that phosphorylation of FIX plays an important role in the physiological activity of this coagulation factor. In this study, we characterized the human FIX activation peptide (AP) using a monoclonal antibody that recognizes phosphorylated Ser-158 in the AP region.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF165) exhibits multiple effects via the activation of two distinct endothelial receptor tyrosine kinases: Flt-1 (fms-like tyrosine kinase-1) and KDR (kinase insert domain-containing receptor). KDR shows strong ligand-dependent tyrosine phosphorylation in comparison with Flt-1 and mainly mediates the mitogenic, angiogenic, and permeability-enhancing effects of VEGF165. Here we show the isolation of two VEGFs from viper venoms and the characterization of their unique biological properties.
View Article and Find Full Text PDFMany biologically active heterodimeric proteins of snake venom consist of two C-type lectin-like subunits. One of these proteins, habu IX/X-bp, is a Gla domain-binding protein whose subunits both bind to a Ca2+ ion, with a total of two Ca2+-binding sites. The molecular modeling and Ca2+-binding analysis of echis IX/X-bp revealed that it lacks one of two Ca2+-binding sites, though the folding of this subunit is conserved.
View Article and Find Full Text PDF