Objectives: Sterilized reusable medical devices have a use-by date, after which sterility is no longer guaranteed. There is currently no consensus on how this should be determined. The aim is to re-evaluate the expiry date of reusable medical devices, by means of a risk analysis and an assessment of the maintenance of the sterile state of reusable medical devices over time.
View Article and Find Full Text PDFTo realize molecular-scale electrical operations beyond the von Neumann bottleneck, new types of multifunctional switches are needed that mimic self-learning or neuromorphic computing by dynamically toggling between multiple operations that depend on their past. Here, we report a molecule that switches from high to low conductance states with massive negative memristive behaviour that depends on the drive speed and number of past switching events, with all the measurements fully modelled using atomistic and analytical models. This dynamic molecular switch emulates synaptic behavior and Pavlovian learning, all within a 2.
View Article and Find Full Text PDFUnderstanding the mechanisms of charge transport (CT) across biomolecules in solid-state devices is imperative to realize biomolecular electronic devices in a predictive manner. Although it is well-accepted that biomolecule-electrode interactions play an essential role, it is often overlooked. This paper reveals the prominent role of graphene interfaces with Fe-storing proteins in the net CT across their tunnel junctions.
View Article and Find Full Text PDFLiquid metal droplets, such as eutectic gallium-indium (EGaIn), are important in many research areas, such as soft electronics, catalysis, and energy storage. Droplet contact on solid surfaces is typically achieved without control over the applied force and without optimizing the wetting properties in different environments (e.g.
View Article and Find Full Text PDFUnderstanding and controlling the orbital alignment of molecules placed between electrodes is essential in the design of practically-applicable molecular and nanoscale electronic devices. The orbital alignment is highly determined by the molecule-electrode interface. Dependence of orbital alignment on the molecular anchor group for single molecular junctions has been intensively studied; however, when scaling-up single molecules to large parallel molecular arrays (like self-assembled monolayers (SAMs)), two challenges need to be addressed: 1.
View Article and Find Full Text PDF