Publications by authors named "H Apeler"

C4.4A (LYPD3) has been identified as a cancer- and metastasis-associated internalizing cell surface protein that is expressed in non-small cell lung cancer (NSCLC), with particularly high prevalence in the squamous cell carcinoma (SCC) subtype. With the exception of skin keratinocytes and esophageal endothelial cells, C4.

View Article and Find Full Text PDF

The fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric, and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which binds to the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a noncleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC).

View Article and Find Full Text PDF

Patients with haemophilia (PWH) are usually monitored by the one-stage activated partial thromboplastin time (aPTT) factor VIII (FVIII) assay. Different aPTT activators may affect clotting time (CT) and FVIII:C levels in patients treated with PEGylated FVIII. To evaluate the characteristics of PEGylated FVIII (BAY 94-9027) in various aPTT clotting assays, and to identify suitable aPTT reagents for monitoring BAY 94-9027 during the treatment of PWH, BAY 94-9027 and World Health Organization (WHO) 8th FVIII standards (WHO-8) were spiked into pooled and individual severe haemophilia A plasma at 1.

View Article and Find Full Text PDF

Background: The rapid clearance of factor IX (FIX) necessitates frequent intravenous administration to achieve effective prophylaxis for patients with hemophilia B. Subcutaneous administration would be a preferred route of administration but is limited by bioavailability.

Objectives: To improve the pharmacokinetics (PK) and bioavailability of FIX, a screen was performed to identify positions for the introduction of novel glycosylation sites with maximal effect on PK and maintenance of coagulation activity.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are the fastest growing class of biopharmaceuticals reflecting their diverse applications in research and the clinic. The correct glycosylation of mAbs is required to elicit effector functions such as complement-dependent and antibody-dependent cell-mediated cytotoxicity, although these may be undesirable for the treatment of certain chronic diseases. To gain insight into the properties of glycan-deficient mAbs, we generated and characterized six different aglycosylated human IgG1 mAbs (carrying the N297A mutation) and compared them to their glycosylated counterparts.

View Article and Find Full Text PDF