Publications by authors named "H Ansanay"

We show here that the rat vasopressin V(1b) receptor simultaneously activates both the G(q/11)-inositol phosphate (IP) and G(s)-cAMP pathways when transiently expressed in Chinese hamster ovary, human embryonic kidney (HEK) 293, and COS-7 cells and stimulated with arginine-vasopressin. Higher concentrations of the hormone, however, were needed to trigger the cAMP pathway. The nonmammalian analog arginine-vasotocin and the selective V(1b) agonist d[Cha(4)]vasopressin also activated the cAMP and IP pathways, although d[Cha(4)]-vasopressin elicited the two responses with equivalent potencies.

View Article and Find Full Text PDF

In its native form, the chemokine CX3CL1 is a firmly adhesive molecule promoting leukocyte adhesion and migration and hence involved, along with its unique receptor CX3CR1, in various inflammatory processes. Here we investigated the role of molecular aggregation in the CX3CL1 adhesiveness. Assays of bioluminescence resonance energy transfer (BRET) and homogeneous time-resolved fluorescence (HTRF) in transfected cell lines and in primary cells showed specific signals indicative of CX3CL1 clustering.

View Article and Find Full Text PDF

A series of fluorescent ligands designed for vasopressin and oxytocin G protein-coupled receptors was synthesized and characterized to develop fluorescence polarization or homogeneous time-resolved fluorescence (HTRF) binding assays. These ligands, labeled with europium pyridine-bis-bipyridine cryptate or with Alexa 488,546,647 selectively bound to the vasopressin V1a and oxytocin receptors with high affinities and exhibited antagonistic properties. The affinities of several unlabeled ligands determined by our homogeneous assays on membrane preparations or on intact cells into 96- and 384-well plate formats were similar to those determined by usual radioligand binding methods.

View Article and Find Full Text PDF

G protein-coupled receptors transmit extracellular signals into the cells by activating heterotrimeric G proteins, a process that is often followed by receptor desensitization. Monitoring such a process in real time and in living cells will help better understand how G protein activation occurs. Energy transfer-based approaches [fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET)] were recently shown to be powerful methods to monitor the G protein-coupled receptors (GPCRs)-G protein association in living cells.

View Article and Find Full Text PDF

Phospholipase C beta (PLC-beta)-coupled G protein-coupled receptor (GPCR) activities traditionally are assessed by measuring Ca2+ triggered by D-myo-inositol 1,4,5-trisphosphate (IP3), a PLC-beta hydrolysis product, or by measuring the production of inositol phosphate using cumbersome radioactive assays. A specific detection of IP3 production was also established using IP3 binding proteins. The short lifetime of IP3 makes this detection very challenging in measuring GPCR responses.

View Article and Find Full Text PDF