Publications by authors named "H Amani Hamedani"

Purpose: To compare pulmonary function metrics obtained with hyperpolarized xenon-129 (HXe) MRS, using chemical shift saturation recovery (CSSR) and CSI-CSSR, in healthy rats and a rat model of radiation-induced lung injury.

Methods: HXe-MR data were acquired in two healthy rats and one rat with radiation-induced lung injury using whole-lung spectroscopy and CSI-CSSR techniques. The CSI-CSSR acquisitions were performed with both fixed TE and variable TE.

View Article and Find Full Text PDF

Brain-machine interface performance is largely affected by the neuroinflammatory responses resulting in large part from blood-brain barrier (BBB) damage following intracortical microelectrode implantation. Recent findings strongly suggest that certain gut bacterial constituents penetrate the BBB and are resident in various brain regions of rodents and humans, both in health and disease. Therefore, we hypothesized that damage to the BBB caused by microelectrode implantation could amplify dysregulation of the microbiome-gut-brain axis.

View Article and Find Full Text PDF

Hyperpolarized Xenon-129 (HXe) magnetic resonance imaging (MRI) provides tools for obtaining 2- or 3-dimensional maps of lung ventilation patterns, gas diffusion, Xenon uptake by lung parenchyma, and other lung function metrics. However, by trading spatial for temporal resolution, it also enables tracing of pulmonary Xenon gas exchange on a ms timescale. This article describes one such technique, chemical shift saturation recovery (CSSR) MR spectroscopy.

View Article and Find Full Text PDF

Purpose: To demonstrate the feasibility of a multi-breath xenon-polarization transfer contrast (XTC) MR imaging approach for simultaneously evaluating regional ventilation and gas exchange parameters.

Methods: Imaging was performed in five healthy volunteers and six chronic obstructive pulmonary disease (COPD) patients. The multi-breath XTC protocol consisted of three repeated schemes of six wash-in breaths of a xenon mixture and four normoxic wash-out breaths, with and without selective saturation of either the tissue membrane or red blood cell (RBC) resonances.

View Article and Find Full Text PDF

Imatinib, a tyrosine kinase inhibitor, attenuates pulmonary edema and inflammation in lung injury. However, the physiological effects of this drug and their impact on outcomes are poorly characterized. Using serial computed tomography (CT), we tested the hypothesis that imatinib reduces injury severity and improves survival in ventilated rats.

View Article and Find Full Text PDF