CrGeTe (CGT) is a semiconducting vdW ferromagnet shown to possess magnetism down to a two-layer thick sample. Although CGT is one of the leading candidates for spintronics devices, a comprehensive analysis of CGT thickness dependent magnetization is currently lacking. In this work, we employ scanning SQUID-on-tip (SOT) microscopy to resolve the magnetic properties of exfoliated CGT flakes at 4.
View Article and Find Full Text PDFThe physical origin of the so-called chirality-induced spin selectivity (CISS) effect has puzzled experimental and theoretical researchers over the past few years. Early experiments were interpreted in terms of unconventional spin-orbit interactions mediated by the helical geometry. However, more recent experimental studies have clearly revealed that electronic exchange interactions also play a key role in the magnetic response of chiral molecules in singlet states.
View Article and Find Full Text PDFLocal magnetic imaging at nanoscale resolution is desirable for basic studies of magnetic materials and for magnetic logic and memories. However, such local imaging is hard to achieve by means of standard magnetic force microscopy. Other techniques require low temperatures, high vacuum, or strict limitations on the sample conditions.
View Article and Find Full Text PDFHybrid ferromagnetic/superconducting systems are well-known for hosting intriguing phenomena such as emergent triplet superconductivity at their interfaces and the appearance of in-gap, spin-polarized Yu-Shiba-Rusinov (YSR) states bound to magnetic impurities on a superconducting surface. In this work we demonstrate that similar phenomena can be induced on a surface of a conventional superconductor by chemisorbing nonmagnetic chiral molecules. Conductance spectra measured on NbSe flakes over which chiral α-helix polyalanine molecules were adsorbed exhibit, in some cases, in-gap states nearly symmetrically positioned around zero bias that shift with magnetic field, akin to YSR states, as corroborated by theoretical simulations.
View Article and Find Full Text PDFA long-term goal for superconductors is to increase the superconducting transition temperature, . In cuprates, depends strongly on the out-of-plane Cu-apical oxygen distance and the in-plane Cu-O distance, but there has been little attention paid to tuning them independently. Here, in simply grown, self-assembled, vertically aligned nanocomposite thin films of LaCuO + LaCuO, by strongly increasing out-of-plane distances without reducing in-plane distances (three-dimensional strain engineering), we achieve superconductivity up to 50 K in the vertical interface regions, spaced ~50 nm apart.
View Article and Find Full Text PDF