HfZrO(HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm AlOinterlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors.
View Article and Find Full Text PDFHafnia-zirconia (HfO-ZrO) solid solution thin films have emerged as viable candidates for electronic applications due to their compatibility with Si technology and demonstrated ferroelectricity at the nanoscale. The oxygen source in atomic layer deposition (ALD) plays a crucial role in determining the impurity concentration and phase composition of HfO-ZrO within metal-ferroelectric-metal devices, notably at the HfZrO /TiN interface. The interface characteristics of HZO/TiN are fabricated via sequential no-atmosphere processing (SNAP) with either HO or O-plasma to study the influence of oxygen source on buried interfaces.
View Article and Find Full Text PDFFerroelectric random-access memory (FRAM) based on conventional ferroelectric materials is a non-volatile memory with fast read/write operations, high endurance, and 10 years of data retention time. However, it suffers from destructive read-out operation and lack of CMOS compatibility. HfO-based ferroelectric tunnel junctions (FTJ) may compensate for the shortcomings of FRAM by its CMOS compatibility, fast operation speed, and non-destructive readout operation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2019
Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect.
View Article and Find Full Text PDF