Objective: Mammalian circadian rhythms are driven by the circadian pacemaker of the suprachiasmatic nucleus (SCN) and are synchronized to the external 24-hour light/dark cycle. After advance time zone transitions (eastbound jet lag), overt circadian rhythms require several days to adjust. The retarded adaptation may protect against acute imbalance of different brain systems.
View Article and Find Full Text PDFThe circadian pacemaker of the suprachiasmatic nucleus (SCN) functions as a seasonal clock through its ability to encode day length [1-6]. To investigate the mechanism by which SCN neurons code for day length, we housed mice under long (LD 16:8) and short (LD 8:16) photoperiods. Electrophysiological recordings of multiunit activity (MUA) in the SCN of freely moving mice revealed broad activity profiles in long days and compressed activity profiles in short days.
View Article and Find Full Text PDFThe suprachiasmatic nuclei (SCN) contain a major circadian pacemaker, which is regulated by photic and nonphotic stimuli. Although enkephalins are present in the SCN, their role in phase regulation of the pacemaker is largely unknown. The opioid agonist fentanyl, a homologue of morphine, is an addictive drug that induces phase shifts of circadian rhythms in hamsters.
View Article and Find Full Text PDFBackground: Circadian rhythms in mammalian behavior, physiology, and biochemistry are controlled by the central clock of the suprachiasmatic nucleus (SCN). The clock is synchronized to environmental light-dark cycles via the retino-hypothalamic tract, which terminates predominantly in the ventral SCN of the rat. In order to understand synchronization of the clock to the external light-dark cycle, we performed ex vivo recordings of spontaneous impulse activity in SCN slices of the rat.
View Article and Find Full Text PDFThe mammalian master clock driving circadian rhythmicity in physiology, metabolism, and behaviour resides within the suprachiasmatic nuclei (SCN) of the anterior hypothalamus and is composed of intertwined negative and positive autoregulatory transcription-translation feedback loops. The Cryptochrome 1 and 2 gene products act in the negative feedback loop and are indispensable for molecular core oscillator function, as evident from the arrhythmic wheel running behaviour and absence of cyclic clock gene expression in mCry1/mCry2 double mutant mice in constant darkness. Recently, we have measured real-time multi-unit electrode activity recordings in hypothalamic slices from mCry-deficient mice kept in constant darkness and observed a complete lack of circadian oscillations in firing patterns.
View Article and Find Full Text PDF