Dimensionality plays a crucial role in long-range dipole-dipole interactions (DDIs). We demonstrate that a resonant nanophotonic structure modifies the apparent dimensionality in an interacting ensemble of emitters, as revealed by population decay dynamics. Our measurements on a dense ensemble of interacting quantum emitters in a resonant nanophotonic structure with long-range DDIs reveal an effective dimensionality reduction to d[over ¯]=2.
View Article and Find Full Text PDFCuprous oxide ([Formula: see text]) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to [Formula: see text]) enables strong long-range dipole-dipole (proportional to [Formula: see text]) and van der Waals interactions (proportional to [Formula: see text]). Currently, the highest-lying Rydberg states are found in naturally occurring [Formula: see text].
View Article and Find Full Text PDFIn this work, we study the magnetic phases of a spatially modulated chain of spin-1 Rydberg excitons. Using the Density Matrix Renormalization Group (DMRG) technique, we study various magnetic and topologically nontrivial phases using both single-particle properties, such as local magnetization and quantum entropy, and many-body ones, such as pair-wise Néel and long-range string correlations. In particular, we investigate the emergence and robustness of the Haldane phase, a topological phase of anti-ferromagnetic spin-1 chains.
View Article and Find Full Text PDFJ Phys Condens Matter
June 2022
Topological quantum chemistry (TQC) has recently emerged as an instrumental tool to characterize the topological nature of both fermionic and bosonic band structures. TQC is based on the study of band representations and the localization of maximally localized Wannier functions. In this article, we study various two-dimensional photonic crystal structures analyzing their topological character through a combined study of TQC, their Wilson-loop (WL) spectra and the electromagnetic energy density.
View Article and Find Full Text PDFWe exploit the effect of light-induced atomic desorption to produce high atomic densities (n≫k^{3}) in a rubidium vapor cell. An intense off-resonant laser is pulsed for roughly one nanosecond on a micrometer-sized sapphire-coated cell, which results in the desorption of atomic clouds from both internal surfaces. We probe the transient atomic density evolution by time-resolved absorption spectroscopy.
View Article and Find Full Text PDF