Introduction: Marginal human donor livers are highly susceptible to ischaemia reperfusion injury and mitochondrial dysfunction. Oxygenation during hypothermic machine perfusion (HMP) was proposed to protect the mitochondria but the mechanism is unclear. Additionally, the distribution and uptake of perfusate oxygen during HMP are unknown.
View Article and Find Full Text PDFBackground: Accurate assessment of steatosis in procured livers is crucial to reduce the poor outcome associated with high-grade steatosis and to optimize the utilization of donor grafts. Clinical examination and digital image analysis (DIA) have been used for steatosis evaluation, but the validity of these methods is debated. This study aimed to compare these methods with standard histology for assessment of steatosis severity in human livers and to evaluate a revised classification system for automated fat measurement.
View Article and Find Full Text PDFIntroduction: Hypothermic machine perfusion (HMP) is increasingly investigated as a means to assess liver quality, but data on viability markers is inconsistent and the effects of different perfusion routes and oxygenation on perfusion biomarkers are unclear.
Methods: This is a single-centre, randomised, multi-arm, parallel study using discarded human livers for evaluation of HMP using arterial, oxygen-supplemented venous and non-oxygen-supplemented venous perfusion. The study included 2 stages: in the first stage, 25 livers were randomised into static cold storage (n = 7), hepatic artery HMP (n = 10), and non-oxygen-supplemented portal vein HMP (n = 8).