Epichlorohydrin is used as an intermediate for the synthesis of polymers and, more particularly, epoxy adhesives. The traditional process involves the cleavage of the carbon-chlorine bond in an alkaline solution. Here, we investigate the breakage of this bond induced by low-energy (<10 eV) electrons.
View Article and Find Full Text PDFReaction induced by slow electrons is implicated in a large field of research and applications. Below 3-4 eV, dissociative electron attachment efficiently fragments molecules via (1) shape resonance or (2) mediated by the formation of a dipole bound anion. While the temperature dependence of process 1 is well-known, that of 2 is not clearly established.
View Article and Find Full Text PDFBenzonitrile (BZN) and carbon tetrachloride (CCl) are versatile solvents used as a precursor for the synthesis of many products. As multi-usage molecules, these compounds may be involved in sustainable chemistry processes such as the cold plasma techniques for which the generated electrons are known to be responsible for reactions. Therefore, it is desirable to explore the interaction of low energy electrons with the co-compounds in the gas phase.
View Article and Find Full Text PDF5-Fluorouracil is now routinely used in chemo- and radiotherapy. Incorporated within DNA, the molecule is bound to the sugar backbone, forming the 5-fluorouridine sub-unit investigated in the present work. For the clinical usage of the latter, no information exists on the mechanisms that control the radiosensitizing effect at the molecular level.
View Article and Find Full Text PDFEthylenediamine is industrially used as an intermediate for the fabrication of many products. The development of new methodologies for synthesis compatible with the environment and sustainability, such as cold plasma processes, implicates reactions induced by nonthermal electrons. In this contribution, we study the interaction of low-energy (<10 eV) electrons with ethylenediamine.
View Article and Find Full Text PDF