A highly basic peroxidase isoenzyme was shown to be released to the culture medium of tomato (Lycopersicon esculentum) hairy roots grown in Murashige-Skoog (MS) liquid medium when it was supplemented with 100 mM NaCl. In this paper we demonstrate that this enzyme is ionically bound to cell walls and that the release was a consequence of the continuous agitation of the tissue in a high ionic strength medium with salt addition. In order to establish the physiological role of this isoenzyme we partially purified it, and we analysed its kinetic properties as coniferyl alcohol peroxidase.
View Article and Find Full Text PDFWe have obtained hairy root cultures of Brassica napus with high biomass and genetic stability which produce peroxidases, enzymes involved in biodegradation processes. In this work, these hairy root cultures were used to study the removal of 2,4-dichlorophenol (2,4-DCP), a common contaminant in industrial effluents that is highly toxic for human and aquatic life. The optimum conditions to obtain high efficiency in the removal process were established.
View Article and Find Full Text PDFWe have purified various peroxidase isoenzymes from roots and hairy-root cultures of turnip (Brassica napus) which could potentially be used for commercial applications such as an enzyme immunoassays, diagnostic test kits, wastewater treatment and soil remediation. One of them, a basic peroxidase called HR2, was secreted into the medium of turnip hairy-root cultures. HR2 had a pI of 9.
View Article and Find Full Text PDFCell suspension cultures of Brassica napus were obtained under different hormonal conditions, using 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin as growth regulators. They were analyzed as a culture system for peroxidase production in vitro to avoid many of the problems that affect the production from field-grown roots. Total peroxidase specific activities reached a maximum at the end of exponential growth phase of the cultures.
View Article and Find Full Text PDFThe last step in the synthesis of lignin and suberin has been proposed to be catalyzed by peroxidases, although other proteins may also be involved. To determine which peroxidases are involved in the synthesis of lignin and suberin, five peroxidases from tomato (Lycopersicon esculentum) roots, representing the majority of the peroxidase activity in this organ, have been partially purified and characterized kinetically. The purified peroxidases with isoelectric point (pI) values of 3.
View Article and Find Full Text PDF