Biochem Biophys Res Commun
December 2007
The model of Monod, Wyman and Changeux is applied to binding phenomena where the Mass Law and its expansion are employed. In this communication the model of Monod, Wyman and Changeux (MWC) is applied to analyze the oxygen binding reaction in hemoglobin. The symmetrical structure of the MWC model with its three parameters is such that two sets of these parameters, rather than one, fit experimental data for the binding of oxygen to hemoglobin.
View Article and Find Full Text PDFAnalyses of the binding of oxygen to monomers such as myoglobin employ the Mass Action equation. The Mass Action equation, as such, is not directly applicable for the analysis of the binding of oxygen to oligomers such as hemoglobin. When the binding of oxygen to hemoglobin is analyzed, models incorporating extensions of mass action are employed.
View Article and Find Full Text PDFMonomeric invertabrate hemoglobins with high oxygen affinity usually contain a tyrosine in the distal region of the heme. This feature has stimulated investigations revealing that one of the properties resulting from the presence of the distal tyrosines is a decreased off rate on the binding of oxygen, thus developing the high affinity. Despite that fact that the pK value of the tyrosine group differs significantly from the groups it replaces little attention has been paid to the pH dependence of the binding of oxygen to the high affinity hemoglobins.
View Article and Find Full Text PDFX-ray studies on deoxy-hemoglobin have been reported on crystals grown under conditions of high (about 2.5 M) and low salt (about 0.1 M).
View Article and Find Full Text PDFMultiple, independent sites or domains behave, on chemical change, in a manner predicted by Langmuir. Distortions of this behavior have been attributed to interactions between the domains, which vary with the progress of the changes occurring at the sites or domains. The two main models for nearest neighbor interactions perturbing the Langmuir prediction for independent domains are those of Ising and Pauling.
View Article and Find Full Text PDF