Background: Type 1 diabetes (T1D) is a chronic condition in which the body produces too little insulin, a hormone needed to regulate blood glucose. Various factors such as carbohydrates, exercise, and hormones impact insulin needs. Beyond carbohydrates, most factors remain underexplored.
View Article and Find Full Text PDFA growing number of studies have applied evolutionary and ecological principles to understanding cancer. However, few such studies have examined whether phenotypic plasticity--the ability of a single individual or genome to respond differently to different environmental circumstances--can impact the origin and spread of cancer. Here, we propose the adaptive horizontal transmission hypothesis to explain how flexible decision-making by selfish genetic elements can cause them to spread from the genome of their original host into the genomes of other hosts through the evolution of transmissible cancers.
View Article and Find Full Text PDFCleaner synthesis of amines remains a key challenge in organic chemistry because of their prevalence in pharmaceuticals, agrochemicals and synthetic building blocks. Here, we report a different paradigm for chemoselective hydrogenation of nitro compounds to amines, under mild, aqueous conditions. The hydrogenase enzyme releases electrons from H to a carbon black support which facilitates nitro-group reduction.
View Article and Find Full Text PDFAnimals, and mammals in particular, vary widely in their "pace of life," with some species living long lives and reproducing infrequently (slow life histories) and others living short lives and reproducing often (fast life histories). These species also vary in the importance of maternal care in offspring fitness: In some species, offspring are fully independent of their mothers following a brief period of nutritional input, while others display a long period of continued dependence on mothers well after nutritional dependence. Here, we hypothesize that these two axes of variation are causally related to each other, such that extended dependence of offspring on maternal presence leads to the evolution of longer lives at the expense of reproduction.
View Article and Find Full Text PDFWe demonstrate an atom-efficient and easy to use H-driven biocatalytic platform for the enantioselective incorporation of H-atoms into amino acids. By combining the biocatalytic deuteration catalyst with amino acid dehydrogenase enzymes capable of reductive amination, we synthesised a library of multiply isotopically labelled amino acids from low-cost isotopic precursors, such as HO and NH. The chosen approach avoids the use of pre-labeled H-reducing agents, and therefore vastly simplifies product cleanup.
View Article and Find Full Text PDF