Dysregulated inflammation-resolution programs are associated with atherosclerosis progression. Resolvins, in part, mediate inflammation-resolution programs. Indeed, Resolvin D2 (RvD2) activates GPR18, a G-protein-coupled receptor, and limits plaque progression, though the cellular targets of RvD2 remain unknown.
View Article and Find Full Text PDFContext: Activation of brown adipose tissue (BAT) thermogenesis improves insulin sensitivity and is beneficial in obesity. Emerging evidence indicates that BAT activation increases lipid mediators that play autocrine and endocrine roles to regulate metabolism and inflammation.
Objective: The goal of the study was to determine the relationship between 2 distinct approaches of BAT activation (cold exposure and mirabegron treatment) with lipid mediators in humans.
Aging is associated with nonresolving inflammation and tissue dysfunction. Resolvin D2 (RvD2) is a proresolving ligand that acts through the G-protein-coupled receptor called GPR18. Unbiased RNA sequencing revealed increased Gpr18 expression in macrophages from old mice, and in livers from elderly humans, which was associated with increased steatosis and fibrosis in middle-aged (MA) and old mice.
View Article and Find Full Text PDFMonocytes (Mo) are highly plastic myeloid cells that differentiate into macrophages after extravasation, playing a pivotal role in the resolution of inflammation and regeneration of injured tissues. Wound-infiltrated monocytes/macrophages are more pro-inflammatory at early time points, while showing anti-inflammatory/pro-reparative phenotypes at later phases, with highly dynamic switching depending on the wound environment. Chronic wounds are often arrested in the inflammatory phase with hampered inflammatory/repair phenotype transition.
View Article and Find Full Text PDFIntroduction/objective: Dysregulated inflammation-resolution programs are associated with atherosclerosis progression. Inflammation-resolution is in part mediated by Resolvins, including Resolvin D2 (RvD2). RvD2, which activates a G-protein coupled receptor (GPCR) called GPR18, limits plaque progression.
View Article and Find Full Text PDF